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LOGISTIC REGRESSION NOTES (draft)

Exponents

First and foremost, note that logarithms ARE exponents, so everything you know about how exponents behave is something you know about how logarithms behave.

An exponent on some number (called a "base") says how many times the number 1 gets gets multiplied by that number. We can usually leave out the 1 from the multiplication since it doesn't change the result. So 102 = 10(10 = 100, 103 = 10(10(10 = 1000, 24 = 2(2(2(2 = 16, 33 = 3(3(3 = 27, etc. Fractional numbers and negative numbers can also be exponents. Their interpretations were codified in 1656 by John Wallis. (He also invented the "number line" in which, conceptually, negative numbers extend to the left of 0 and positive numbers to the right -- even though he himself didn't quite believe in negative numbers since they were "less than nothing".)

A fractional exponent means you're finding that root of the number: a power of 1/2 means the square root, a power of 1/3 means the cube root, etc. So 1001/2 = ((100) = 10, and 271/3 = 3((27) = 3. The fractional exponent literally means 1 gets multiplied by that number less than a whole time, but that notation actually makes sense. Look, 21/2 = ((2) = 1.414 or so. When you multiply something by 1.414 you really are halfway to multiplying it by 2, because if you do it again, you'll have gone the rest of the way. For instance, 1(21/2 = 1.414, which is halfway toward multiplying by 2; do the second half by finding 1.414(21/2 = 2. Or pick some number like 5, and do 5(21/2 = 7.07. then multiply that by 21/2 again and you have 10, which is the rest of the way toward multiplying 5 by 2. If you find the cube root of a number, such as 201/3 = 2.714, then to multiply a number by 20 you have to multiply it by 2.714 three times. For instance, 4(20 = 80, or in three equal steps, 4(2.714 = 10.856 is a third of the way there, 10.856(2.714 = 29.463 is two-thirds of the way there, and 29.463(2.714 = 79.96 which is 80 within rounding error. 

A fractional exponent with a numerator other than 1 tells you to first raise the number to the power of the numerator, then take the denominator root of the result: 22/3 means find 22 and take its cube root; 23/2 means find 23 and take its square root.

Typically fractional exponents are expressed as decimals: 21/2 is 2.5 and 201/3 is 20.333. The decimal notation is especially handy because 22/3 means 2.667, but there are plenty of exponents that don't resolve neatly into simple fractions, like 10.6178. Though I suppose you could always view 10.6178 as 106178/10,000 and think of it as the 10,000th root of 106178 -- but surely that's not helpful.

An exponent of 1 means multiplying 1 by the number one time, which will always give the number or "base" itself.

An exponent of 0 means multiplying 1 by the base number zero times; that's NOT multiplying 1 by 0, it's just leaving it unmultiplied by anything else! If you don't multiply 1 by anything at all, you're left with 1. So by definition anything raised to an exponent of 0 is 1: 20 = 100 = 30 = (‑56)0 = 6170 = 1.

A negative exponent means taking the reciprocal of the number raised to that power. So 2‑2 = 1/22 = 1/4; 10‑3 = 1/103 = 1/1000, etc.

Implicit in these conventions are some simple rules for combining exponents when they have a common base:

-
multiplication becomes the addition of exponents: 103(102 = 105 (that is, 1000(100 = 100,000), and in terms of those exponents, 3 + 2 = 5. This applies to fractional exponents as well: 2.5(2.5 = 2(.5+.5) = 21 = 2.

-
division then becomes the subtraction of exponents: 103/102 = 101 (that is, 1000/100 = 10), and in terms of those exponents, 3 - 2 = 1. Note that this is saying that the ratio of 103 to 102 is 101, so the exponent of the ratio is the difference between  the top and bottom exponents. By the same rule, if the top number is smaller than the bottom number, the exponent is negative and the ratio is therefore less than one: 102/103 = 10‑1 means 100/1000 = 1/10.

-
if a base raised to an exponent is then raised to another exponent, that's equivalent to multiplying the first exponent by that second exponent: (103)2 = (1000)2 = 1,000,000, or (103)2 = 103(2 = 106 = 1,000,000.

Logarithms
"Logarithm" is another word for exponent, from the combination of Greek "logos" or proportion with "arithmos" or number; using logarithms focuses on the use of the aforementioned arithmetic and ratio characteristics to help simplify calculations involving very large or small numbers.They were invented in 1614 by John Napier, who also popularized the decimal point, and used math to interpret the Book of Revelation to predict the end of the world in 1688. (This apocalypse was narrowly averted by the publication of Newton's Principia Mathematica in 1687.) For centuries complex calculations depended on published tables of long lists of logarithms, and the use of slide rules that had different logarithmic scales printed on connected movable rulers. Now we do math by pressing buttons instead.

The logarithm of some number N in base 10 is often written as log(N), or more explicitly as log10(N) to identify the base as the logarithm to the base 10. To write the logarithm to the base 2 we have to write log2(N) to be clear about what our base is (i.e., what number we're raising to that logarithm exponent). The same number has completely different logarithms when different bases are used: log10(1000) = 3, but log2(1000) = 9.966.

Notice that 29.966 = 1000 which is really close to 1024, or 210; that's the difference between raising 2 to the 9.966th or nearly 10th power, vs. raising it fully to the 10th power. (Computer nerds know that what is called a kilobyte of information is not really 1000 bytes as the name implies, but rather 210 or 1024 bytes. But then, they say there are only 10 kinds of people in the world: those who understand binary arithmetic and those who don't.)

We say we raise a base to a power, so the phrase "logarithm to the base 10" could more grammatically be "logarithm from the base 10." But it's standard to say "to" because math has its own grammar.

The "logarithm to the base e" of some number means the exponent or power that the base 'e' is raised to to get that number. That base 'e' is not a variable but a constant roughly equal to 2.71828 (though the decimal places go on forever). Statisticians and mathematicians in general prefer to use e as their logarithm base instead of the more intuitive 10, or even 2, because e has certain simplifying properties that matter in more complex calculations though they do us no good whatsoever in most cases we encounter (such as logistic regression). But anything that's true of logs using one base will be true using another. A statistical procedure or transformation or whatnot using base e will yield the exact same results as it would if you used base 10 instead. If we did logistic regression calculations using 10 as the base, we'd get different numbers for the b-weights, but when we raised 10 to the resulting exponents we'd find the exact same odds, odds ratios, probabilities, and statistical significance for each of our predictors. Therefore, all your base are belong to us.

The constant e was named by Leonard Euler, but it probably stood for "exponential," not for his name. One nice property of e is that I can now write my name as 2.71828*[covxy/sx*sy]*((‑1)*((E/M).

Rather than notating "logarithm of 20 to the base e" as loge(20), we call using the base e the "natural logarithm" and abbreviate that as L.N. (with Latin word order). Usually the LN is written in lower case: "logarithm of 20 to the base e" = ln(20).

Raising a base to a logarithm is the inverse operation of finding the logarithm to that base. It just means raising e (or 10 or 2 or whatever) to some power. Often instead of writing "e to the power of 3" as e3, it's written as Exp(3) for "exponentiated 3 using base e". The number obtained by raising a base to a power is sometimes referred to as the "antilogarithm" of that power, but that term isn't used much anymore.

If you raise a base to the logarithm of some number, you get the number itself. The logarithm is the exponent you need to raise the base to to get a certain number, so by definition, when you actually DO raise the base to that exponent, you get the number. So 10log10(35) = 35, even though we may not know offhand what log10(35) is. And eln(35) = 35 as well, for the same reason. (Note the exponent says "ln" to indicate that e is the base; log10(35) and ln(35) are completely different numbers.)

The rules for combining exponents apply to logarithms as well:

-
multiplication becomes the addition of logarithms: 103(102 = 105 (that is, 1000(100 = 100,000), so in terms of logarithms, log10(1000) + log10(100) = log10(100,000), or 3 + 2 = 5. For fractional exponents, 2.5(2.5 = 21, so in terms of logarithms, log2(2.5) + log2(2.5) = log2(21), or .5 + .5 = 1.

-
division then becomes the subtraction of logarithms: 103/102 = 101 (that is, 1000/100 = 10), so in terms of logarithms, log10(1000) - log10(100) = log10(10), or 3 - 2 = 1. Note that this is saying that the ratio of 103 to 102 is 101, so the logarithm of the ratio is the difference between  the top and bottom logarithms. By the same rule, if the top number is smaller than the bottom number, the logarithm difference is negative and the ratio is therefore less than one: 102/103 = 10‑1 means log10(100) - log10(1000) = log10(1/10), or 2 - 3 = ‑1.

-
if a base raised to an exponent is then raised to another exponent, that's equivalent to multiplying the first exponent or logarithm by that second exponent: (103)2 = 103(2 = 106 , or 10002 = 1,000,000; so in terms of logarithms, log10((103)2) = log10(103)(2 = 3(2 = 6.

"Yes, logarithms -- that horror of high school algebra--were actually created to make our lives easier. In a few generations, people will be equally shocked to learn that computers were also invented to make our lives easier." (When Slide Rules Ruled. Stoll, Cliff. Scientific American; May2006, Vol. 294 Issue 5, p80-87)

Odds and probabilities

Probabilities range from 0 to 1 and represent the number of times an event occurs, out of the total number of times it could have occurred, and it may also be expressed as a percentage. If 6 out of 10 people wear hats on a given day, the probability of wearing a hat is 3/5 or .6, or 60%. The neutral probability is .5, where it's an even guess whether someone will wear a hat or not.

Odds range from 0 to infinity (∞) -- both values are asymptotes and can't actually be reached. Odds are a ratio of the probability of something occurring to the probability of it not occurring; those two probabilities are exclusive and exhaustive. People either wear a hat or they don't. If the probability of wearing a hat is .6, then the probability of not wearing a hat is 1.0 - .6 = .4, or 40%. In that case the odds of wearing a hat would be .6/.4, or 6:4, or 3:2, or -- reduced all the way -- 1.5:1 which would be just 1.5. In statistics odds are usually reduced all the way to a "something-to-1" ratio, and expressed as a single number. It means for every 1 person not wearing a hat, 1.5 people ARE wearing a hat. The neutral value of odds is 1.0 -- that would mean an even guess whether someone will wear a hat because it would mean for every 1 person not wearing a hat, 1 person IS wearing a hat. The 1.0 would result from dividing the .5 probability of wearing a hat by the .5 probability of not wearing a hat.

Odds can be changed back into probabilities using the equation "probability = odds / (1 + odds)", sometimes presented in the algebraically equivalent version "probability = 1 / (1 + 1/odds)". Taking the first version as the simpler, consider what it says. We've reduced the odds to "something-to-1" format: odds of 1.5 mean that for every one non-occurrence of the event, there are 1.5 occurrences. So the total number of observations involved is that 1 non-occurrence plus the 1.5 occurrences, hence the denominator of "1 + odds". The numerator simply represents the number of times the event occurs out of this same total number of observations. Hence, "odds / (1 + odds)" is the number of times an event occurs, out of the total number of times it could have occurred -- which is the probability of the event. For odds of 1.5, we obtain "1.5 / (1 + 1.5) = 1.5 / 2.5 = .6" It's somewhat more intuitive if the odds are described instead as 6:4 because then it's clear that 6 occurrences and 4 non-occurrences are the total, and the probability is 6 / (4 + 6). You can always use that strategy, but reducing the odds to a single number like 1.5 allows the probability expression to be general with a "1" always in the denominator, instead of having to substitute a different  number of occurrences and non-occurrences for each sample size.

Both probabilities and odds can change under different circumstances. The probability of wearing a hat might be .6 in winter, but perhaps it drops to .2 in summer (baseball caps count as hats). That makes the summertime probability of not wearing a hat .8. The corresponding odds in the summer then are .2/.8 = .25.

Comparing these two odds results in an odds ratio (OR) that describes the change in the odds across the two sets of circumstances. In winter the odds of hat-wearing are 1.5, in summer .25, and their ratio is 1.5/.25 = 6: odds of wearing a hat are 6 times greater in winter than in summer. This works from the other direction as well. What is the odds ratio for summer compared to winter? The same numbers are involved but now we invert the ratio: in summer the odds of hat-wearing are .25 and in winter 1.5, so the ratio is 1/6: odds of wearing a hat in summer are 1/6 the odds in winter. As a percentage, you could say the summer odds are only 16.6% of the winter odds. And you might alternatively put that as, summer odds are 83.3% lower than winter odds.

Odds range from 0 to infinity as probability ranges from 0 to 1. A probabilty of 1 means infinite odds -- undefined in fact, since the odds in that case would be 1 / (1 - 1), or 1 / 0. On this odds scale, probabilities from .5 to 1 become odds from 1 to infinity; notice that for P = .6 odds are 1.5; for P = .8 odds are 4; for P = .9 odds are 9; for P = .95 odds are 19; for P = .99 odds are 99; for P = .995 odds are 199, etc. But probabilities from 0 to .5 are all crammed into the odds scale between 0 and 1. Remember, 1 is the neutral "even" value for odds; below that, odds are smaller and smaller fractions, but they never get smaller than 0 since they're always ratios of probabilities which are necessarily positive. So for P = .4 odds are .666; for P = .2 odds are .25; for P = .1 odds are .111; for P = .01 odds are .0101; etc.
An example of interpreting an odds ratio: Here's a quote from Business Week magazine from an article titled "Do Cholesterol Drugs Do Any Good?" (1/17/08):

[A] printed ad [by Pfizer]...proclaims that "Lipitor reduces the risk of heart attack by 36%...in patients with multiple risk factors for heart disease."

...The dramatic 36% figure has an asterisk. Read the smaller type. It says: "That means in a large clinical study, 3% of patients taking a sugar pill or placebo had a heart attack compared to 2% of patients taking Lipitor."

Now do some simple math. The numbers in that sentence mean that for every 100 people in the trial, which lasted 3 1/3 years, three people on placebos and two people on Lipitor had heart attacks. The difference credited to the drug? One fewer heart attack per 100 people.

[http://www.businessweek.com/print/magazine/content/08_04/b4068052092994.htm]

(Actually the writer must mean "for every 200", not 100, people, since the 2% and 3% figures are percentages that clearly refer to different groups of patients -- Lipitor vs. placebo -- not just "people in the trial".)

That 36% reduction figure is an odds ratio.  Look at the respective probabilities of heart attack for 100 Lipitor and 100 no-Lipitor patients:



heart attack
no heart attack


Lipitor (n=100):
2
98


no Lipitor (n=100):
3
97

That means the odds of heart attack for the Lipitor group are .02/.98. or 2:98, or .02041. And the odds of heart attack for the non-Lipitor group are .03/.97, or 3:97, or .03093. The ratio of those two odds is (odds of heart attack w/ Lipitor) / (odds of heart attack w/o Lipitor) which is .02041 / .03093 = 0.65988 -- call it .66. The odds ratio of .66 means the odds of having a heart attack on Lipitor are 66% of the odds  of having one w/o Lipitor; or put another way, they are 100 - 66 = 34% lower. The reported reduction was 36% not 34%, but that's just rounding error that is most likely due to the fact that those figures of 2% and 3% are themselves rounded.

Substantively, that 1-per-hundred difference is a worthwhile reduction when it comes to something as important as avoiding a heart attack, even with the small base rates. But also notice that this reduction applied not to everyone, but to those "with multiple risk factors for heart disease," each of which must have had its own odds ratio associated with it -- smoking, diet, family history, etc. If the risk reduction due to Lipitor were even greater for the population in general, surely Pfizer would have said that; it must actually be smaller then. What is that odds ratio, we wonder? So the benefits of the drug are further narrowed. The article reports that findings of some recent research on drugs like Lipitor suggest that they do indeed lower cholesterol, but that doesn't lead to much of a reduction in the rate of heart attacks in absolute terms. Most people don't see lowering cholesterol as an end in itself, though, so the drug's usefulness is being questioned. Not to mention, it's expensive and can have unpleasant side effects, and probably isn't as effective at preventing heart attacks in the general population as, say, eating better and exercising!

Logistic Regression
In logistic regression, logarithms and odds are essential concepts. For reasons to be discussed, we create a regression equation that predicts the natural logarithm of the odds of being in one of two groups (or equivalently, of an event occurring as opposed to not occurring -- like wearing a hat or having a heart attack). The predictors or X variables describe the circumstances by which the odds can differ: summer vs. winter for hat-wearing, Lipitor vs. no-Lipitor for heart attacks. The Xs can be continuous as well: heart attack odds might differ not just according to drug group, but also by number of years as a smoker, or grams of saturated fat in the diet. Based on all the predictors available, we can compute the natural log of the odds of the event occurring, which can be translated successively into the odds of the event occurring and then the probability of the event occurring; any time that probability is greater than .5, we would predict that the event (hat-wearing, heart attack) will occur. The b-weight for a predictor X in logistic regression tells us how the predicted  natural log of the odds changes due to a 1-unit change in X: it is the natural logarithm of the odds ratio associated with that X. To get the actual odds ratio, we have to exponentiate the value of b -- that is, find eb or Exp(b).

Why predict "ln(odds of Y occurring)"?

When Y is a dichotomous variable coded 0 or 1, no prediction formula based on a linear combination of X's will give us only one value or the other. We immediately find that we're predicting the probabilty of Y having a value of 1, or P(Y=1). A linear regression equation that yields probabilities of Y seems reasonable, but actually has several serious shortcomings.

-
The actual values of Y are 0 and 1, and if X predicts this well, most low values of X will have a Y of 0 and most high values of X will have a Y of 1 (or vice versa if X is negatively related to Y). There can be no smooth transition in Y from 0 to 1 as X increases. As a result, the predicted probabilities of Y typically should stay very low for low X, then change steeply in the middle range of X, and then remain high for high values of X. In other words, a good prediction of the probabilities would not be on a straight line: the relationship between X and Y is not linear. It's actually sort of S-shaped (though the climbing portion of the curve doesn't travel backwards as in the written letter S). But a linear regression equation is, needless to say, linear.

-
A consequence of this mistaken linearity assumption, aside from the artifically gradually increasing predicted probabilities as X increases, is that very low values of X are likely to lead to predictions less than 0, while very high values of X can lead to predictions higher than 1. Both are nonsense since probabilities range only from 0 to 1. Though we could ignore the out-of-range probabilities and fix them at 0 and 1, we still lose a lot of accuracy in making these impossible predictions.

-
The linear regression assumption of homoscedasticity is violated as well. Low predicted probabilities (e.g., .1) will have corresponding true Y values of 0, and high ones (e.g., .9) will have Y values of 1, so the discrepancies or residuals will be minimal. But in the middle range of X when predicted probabilities are likewise in the middle (e.g., .4, .5, .6), the distance from the predicted value to the actual value of 0 or 1 will necessarily be greater. Thus there is more variance around the middle of the regression line than there is on the ends. Homoscedasticity says the variance of the residuals is the same at all values of X -- clearly not the case here.

-
Likewise the linear regression assumption of normality can't hold. We need the residuals to be normally distributed around the regression line for each value of X, but that can hardly be the case when there are only two values of Y, and therefore only two values for the residual at any X. When predicted probability is .3, Y is either 0 or 1 and the residuals are either .3 or .7; when predicted probability is .6, Y is either 0 or 1 and the residuals are either .6 or .4; and so on. There can't be a normal distribution of just two values -- only a frequency histogram with one column higher than the other, possibly about the same height for middle values of X, but in no sense ever approximating normality.

What to transform Y into?

To overcome these failures of the linear regression model and assumptions, we transform Y into a form that is more amenable for prediction by a regression equation.

Y with values 1 or 0 has become P(Y=1) which has continuous values from 0 to 1. That having been shown to be insufficient, we use another transformation that opens up the range of X on the positive side: express that probability as odds, since odds range from 0 to infinity as probability gets closer and closer to 1. (A probabilty of 1 means infinite odds -- undefined in fact, since the odds in that case would be 1 / (1 - 1), or 1 / 0.) On this odds scale, probabilities from .5 to 1 become odds from 1 to infinity; notice that for P = .6 odds are 1.5; for P = .8 odds are 4; for P = .9 odds are 9; for P = .95 odds are 19; for P = .99 odds are 99; for P = .995 odds are 199, etc. But probabilities from 0 to .5 are all crammed into the odds scale between 0 and 1. Remember, 1 is the neutral "even" value for odds; below that, odds are smaller and smaller fractions, but they never get smaller than 0 since they're always ratios of probabilities which are necessarily positive. So for P = .4 odds are .666; for P = .2 odds are .25; for P = .1 odds are .111; for P = .01 odds are .0101; etc. This again does not lend itself to prediction by a linear regression equation.

The transformation that linearizes the predicted values of Y is to take the logarithm of the odds. (It doesn't mater which base is used, but we choose base e by convention so we're using the natural logarithm of the odds.) Comparing odds(Y=1) to ln(odds(Y=1)) we can see that odds values that trail off to infinity in the positive direction map on to logarithms that extend toward infinity in the positive direction. The neutral odds value of 1 becomes a neutral ln(odds) value of 0. And all the odds values between 0 and 1 become negative values of ln(odds), stretching toward negative infinity as the odds decrease toward 0, becoming infinitely tiny. This is the appropriate transformation, which can be predicted in a linear fashion from X when the probabilities of raw Y are related to X by that non-linear S-shaped curve.

The natural log of the odds of Y=1 -- that is, ln(P(Y=1)/[1-P(Y=1)]) -- is abbreviated as the "logit" of Y, or "logit(Y)". The term "logit" is in turn an abbreviation of the words "logistic unit". The reason for using the logit transformation is that the S-shaped curve relating X to probabilities of Y is known as a logistic function, and changing Y into these "logistic units" converts the S-shape into a line.

The S-shaped (or "sigmoidal", from the Greek for "S") curve based on the untransformed Y probabilities is a logistic function, which has the general form Y = ex / (1 + ex). Logistic regression takes its name from this function, since it describes the relation between X and Y just as a line does for linear regression. In the special case of a dichotomous Y, changing Y into its logit or ln(odds) version makes the relationship with X linear. That is a requirement if we want to use a linear prediction equation, which is what every standard regression equation is. In order to predict probabilities of a dichotomous Y variable from a linear equation using X, the logit transformation is necessary. Once we have the logit of Y, we can predict it using the familiar format of logit(Y) = a + b1X1 + b2X2 + ...

It should be noted that the logit transformation doesn't really make the relationship perfectly linear -- there's still a little bit of S-shape to it, but it's much slighter and doesn't interfere with the legitimacy of the prediction equation to any important extent. It's also not the case that the other assumptions of homoscedasticity and normality are magically met through this transformation. The assumptions are instead rendered unnecessary by the rest of the logistic regression procedure, as they are mostly part of the logic of significance testing for linear regression.

LOGISTIC REGRESSION SUMMARY

Probabilities, odds, odds ratio

Probabilities range from 0 to 1.0, e.g., P = 0.8. Odds are a ratio of two probabilities, ranging between 0 and infinity (in principle). Given two exclusive exhaustive categories (such as hired/not hired, diagnosis positive/negative), if the P of being in one category is P(categ 1) = .8 then the P of being in the other category must be P(not categ 1) = .2, and the ODDS of being in the first category are .8 / .2 = 4.0 (or 4-to-1). When odds are 1.0 (that is, 1-to-1), the probabilities are the same for being in each category.

Maybe those odds are different depending on certain circumstances. Under one set of circumstances the odds of being in category 1 are 4.0 as just mentioned, but under different circumstances, the odds are 6.0 (or 6-to-1). Then we could say the odds change according to those circumstances, by a factor of 1.5 because 6.0/4.0 = 1.5. That 1.5 is the odds ratio -- a ratio of two ODDS -- which is the highest level of comparison to make, describing how odds change under different circumstances. Notice "odds" are ratios of two probabilities, and an "odds ratio" is a ratio of two odds. Both are ratios; keep straight what they're ratios OF.

The "circumstances" that could change the odds are just what we try to measure and use in the prediction equation in logistic regression: higher IQ, higher score on a depression scale, number of schizophrenic symptoms reported, age, etc. It can also be something categorical: teaching method 1 vs 2 vs 3 to predict whether kids will meet some testing criterion or not. These predictors are the X variables just as in linear regression.

Why change odds to log(odds)

Odds less than 1 are all squeezed in from 0 to 1, with smaller odds being smaller decimal numbers approaching zero. Odds larger than 1 just keep getting bigger on to infinity. That's hardly fair. To even them out, instead look at the exponent (power) they get raised to, from some base number. Between 0 and 1 the exponents are negative, and above 1 they're positive. And odds of 8-to-1 have the same exponent as odds of 1-to-8, only the first is positive and the second is negative. Doesn't matter what base you use for your exponents. We're used to base 10, but mathematicians are used to natural logarithms which use the base e where e = 2.71828. A logarithm is an exponent; it's just the power you raise your base to to get the number you're talking about. In base 10 the log of 100 is 2. In base e, you'd need a calculator to figure out the log of 100 (and it would be written ln(100) for "natural log" instead of log(100) in base 10). Luckily calculators are everywhere. These exponents or logarithms of odds are evenly spaced on a straight number line going from negative to positive infinity, whereas odds are not laid out so neatly, so it's the logarithms of the odds that can have linear relationships with most variables and are therefore predictable using regression.

Predicting the exponent of the odds

Logistic regression uses a regression equation like Y = a + b1X1 + b2X2 to predict the exponent of the odds (or log(odds)) of being in one group vs the other: instead of Y being the value of a variable, it's the exponent to raise e to to get the odds of being in a group. The "regression equation" part of that should be completely familiar, and having multiple predictors is not much different than having just one predictor. The b-weight is the change in the exponent for a 1-unit change in X while holding all other X's constant. The significance test of the b-weight uses the Wald statistic (square of b/SEb; essentially the square of the t-ratio, though evaluated as a chi-square); if the resulting p-value is less than .05, you can interpret it as significant in the usual way.

Deviance, or ‑2LL (‑2 log likelihood)

Based on the regression equation, a joint probability of all the observations occurring can be calculated (not by us), which is referred to as the likelihood. Whether this likelihood is relatively high or low, it's always a very small decimal number so to make it more manageable we take its (natural) logarithm, which makes it a rather large negative number. To get the statistic called the "deviance" we then multiply that large negative "log likelihood" by ‑2, that is, we change the sign for convenience, and double its size. This has the desirable effect of making it into a variable whose distribution matches the chi-square distribution, which means we can judge how significant that deviance is given a certain sample size (from which we compute the df for chi-square). A large (significant) deviance means our prediction deviates considerably from the actual data. A small (non-significant) deviance means our prediction is a good approximation of the actual data. More usefully, each model / regression equation we could examine has a deviance, so we can compare a model with and without a given predictor (or set of predictors); the difference in deviances between two such nested models itself follows a chi-square distribution with df equal to the number of predictors they differ by. Comparing models with and without a single predictor lets us compute a chi-square value for that single predictor's reduction of deviance, and this significance test of a predictor is preferable to using the Wald statistic.

Prediction using logistic regression 

Once a regression equation has been derived, an individual's X values can be put into the equation just as in any other regression equation. The resulting predicted value (call it Y' for convenience) is not a readily interpretable score -- it's the natural logarithm of the odds of that individual being in category 1, that is, ln(odds Y=1). If we raise the base e to that power (eY' or Exp(Y')) we have the odds of the person being in category 1. If those odds are greater than 1.0, we predict they fall into category 1; if less than 1.0, we predict they fall into category 0. We can also transform odds to probabilities using the formula P = odds / (1+odds). Then likewise, if the person's probability of being in category 1 is greater than .5, we predict they fall into category 1; if less than .5, we predict they fall into category 0. For example, if a person's X scores are plugged into a regression equation and produce a Y' of ‑2, we know their odds of being in category 1 is e‑2 = 2.71828‑2 = .135, which is less than 1.0 so we predict they are in category 0. Equivalently, transforming that into a probability gives us P = .135/(1+.135) = .119, which is less than .5, which again tells us to predict they are in category 0.

Interpretation of the intercept

The intercept 'a' in the logistic regression equation is the natural log of the observed odds of being in category 1, that is, it represents the proportion of the sample that actually is in category 1. Specifically, the observed odds is the proportion in category 1 divided by the proportion in category 0, and 'a' is the natural log of that number. Given no information at all about possible predictors, that baseline observed odds value is what we'd assign to every future observation by default (that is, out of ignorance). Adding predictors to the equation modifies that default prediction. In terms of the familiar regression definition of 'a' as the predicted value of Y when all X's are 0: if all X's are 0, then every bX term in the equation is also 0, which means the only term representing the ln(odds Y=1) is the intercept 'a'. But 'a' is the same for everyone, which gives us the odds we'd have to predict given no other information about X's. (Note that if we do have predictors in the equation, as is usual, it would still be conceivable that someone actually would have 0's for all their X values, in which case we'd predict the intercept as their ln(odds Y=1), but we'd predict different log odds for other people based on their own X values; the intercept is the starting point for all our predictions.)

Why Exp(B) is the odds ratio

The b-weights are not easily interpretable directly, but they can be "exponentiated" by raising the base e to the power of b: Exp(B) = eb. As for interpreting the Exp(B), remember that when you add a number to an exponent, that's like performing multiplication on the number itself. So changing the overall exponent "a + bX" by b when X increases by one (adding if b is positive, or subtracting if b is negative, as with any regression coefficient), means you're going from one odds expression to a different odds -- the former before bX changed the exponent, and the latter after bX added to or subtracted from the exponent. This relation is additive for the exponent of the odds but is multiplicative for the odds themselves, so while b represents an additive increment to the exponent of the odds, Exp(B) -- which is "e raised to the power of b" -- represents the number by which you multiply the original odds (before X changed) to get the new odds (for when X increased by one). That is, it's the odds ratio for a one unit change in X, or the factor the odds change by when X increases by 1.

How odds change with X given the odds ratio

For an odds ratio of, say, 4, we can examine how odds change with X: they always increase by the factor of the odds ratio as X increases by 1 unit. If someone with X = 22 has odds = .05, then someone with X = 23 has odds = 4*.05 = .20; then someone with X = 24 has odds = 4*.20 = .80; then someone with X = 25 has odds = 4*.80 = 3.2; then someone with X = 26 has odds = 4*3.2 = 12.8; and so on. Each increase of one unit in X multiplies the odds by the odds ratio of 4. Notice two things: First, when X changed from 24 to 25, the odds changed from less than 1 (.80) to more than 1 (3.2); that means we'd now predict membership in category 1 rather than 0. Second, notice that when X increases by 2 units, the odds increase by 42 (any two step increases have odds that differ by 16 instead of 4, e.g., .05*16 = .80), and if X increases by 3 units, the odds increase by 43 (any three step increases have odds that differ by 64 instead of 4, e.g., .05*64 = 3.2); in general the full odds ratio is the basic one-unit odds ratio raised to the power of the number of units X increases by.

Odds ratio from exponents

If this were in base 10 instead of base "e", it would look like this: adding 3 to the exponent of 100 (which is 2) would give a new exponent of 2+3=5 (giving 100,000). That's equivalent to multiplying that 100 by 10 to the third power: 100 times 1000 = 100,000. If these numbers were actually odds (e.g., 100-to-1, 100,000-to-1) we could say this: b=[3] and changing the exponent of the original odds by [3] to get the new exponent of 5 is equivalent to multiplying the odds themselves by [10 to the third, or 1000] to get the new odds of 100,000. New odds divided by old odds is the odds ratio: 100,000 divided by 100 = 1000. So the odds ratio is 1000, which is 10 raised to the power b (3 in this case). Exp(B) = Exp(3) = 1000 = odds ratio. (But remember in logistic regression we use base e instead of base 10.)

Comparing b-weights as odds ratios

Notice if b=0 or is non-significant (so pragmatically the same as zero), that says the odds ratio is Exp(B) = Exp(0) = 1 -- because e, or any number, raised to the exponent 0 is just 1, by definition. So if b = 0 and the resulting odds ratio is 1, that means the effect of any change in X is to multiply the odds by 1, which leaves the odds completely unchanged. So just as in linear regression, a b-weight of zero means that predictor has no effect. Odds ratios bigger than 1 can get infinitely large, but those smaller than 1 can only go as far down as zero. So don't go by absolute size of the odds in comparing them, and don't even go by their distance from the neutral odds ratio of 1.0. An odds ratio of Exp(B) = 20 is a weaker effect than one of Exp(B) = .02: although the former changed the odds by a factor of 20 (by multiplying), the latter changed them by a factor of 50 (by dividing). Better to take the reciprocal of any odds ratio less than one before comparing it to another odds ratio. Or even just compare the absolute value of each b itself, which is 2.996 in the first case and ‑3.912 in the second (says my calculator).

Requirements for logistic regression

Linear regression assumptions of normality and homogeneity of variance and linearity aren't met when the DV is dichotomous. Logistic regression has only very slight assumptions: the DV has to be dichotomous (more than two categories can be dealt with using polychotomous logistic regression); the DV's categories must be exclusive and exhaustive (observations must belong to one and only one category); the sample size must be on the order of 50 observations per predictor; and as in linear regression the observations must be independent of one another and the model must be correctly specified. The main difference in computation is that for a dichotomous DV the intercept and b-weights of the predictors can't be found with the familiar simple formulas derived from "ordinary least squares" regression. Instead the procedure uses "maximum likelihood estimation" which will give you unstable junk with huge standard errors unless there are at least 50 participants for each predictor variable used.

